多吃香蕉有什么好处和坏处| 屈原是什么朝代| 高枕无忧是什么意思| 癫痫是什么| 马冬梅是什么意思| od是什么意思| 安代表什么生肖| 白带呈绿色是什么原因| 嘴唇发紫黑是什么原因| 什么是弱视| rd是什么| 磺胺是什么药| 籺是什么意思| 什么茶提神| 吕布属什么生肖| 郡肝是什么部位| 桂林山水下一句是什么| lo是什么意思| 火奥念什么| 全身疼痛是什么原因| 青岛啤酒节什么时候| 取向是什么意思| 心态崩了什么意思| 赟怎么读 什么意思| 天癸是什么意思| pubg什么意思| 青提是什么| 花儿为什么这样红歌词| 子宫收缩是什么感觉| 泡黄芪水喝有什么好处| 独生子女证办理需要什么材料| 体育精神是什么| 为什么打哈欠会传染| 手脚发胀是什么前兆| menu是什么意思| 遥祝是什么意思| 嘴角烂了是什么原因| 什么人不能喝蜂蜜| 乙肝抗体阳性是什么意思| 和衣是什么意思| edt是什么时间| 1990属马的是什么命| luna什么意思| 建日是什么意思| 女人梦见鱼是什么意思| 香蕉有什么好处| classic什么意思| 纵是什么意思| 肛门镜检查能查出什么| 四不伤害是指什么| 肛门里面疼是什么原因| 例假少吃什么能让量多| 落马是什么意思| 我行我素是什么意思| 芽轴发育成什么| 女生右眼睛老是跳是什么原因| 县政府党组成员什么级别| 射频消融是什么手术| 黄瓜籽粉有什么功效| 吃石斛有什么功效| 维c有什么功效和作用| 三尖瓣少量反流是什么意思| 小便有刺痛感什么原因| 电疗有什么作用和功效| 中药饮片是什么| 什么是戒断反应| 夏天怕冷是什么原因| 中午吃什么不会胖| ba是什么元素| 冬至吃什么馅的饺子| 鸭子喜欢吃什么| 4.2什么星座| 糖化血红蛋白高是什么意思| 色素沉着有什么办法可以去除| 牙齿发黄是什么原因导致的| 九牛一毛指什么生肖| 稍纵即逝什么意思| 八月八号什么星座| otc是什么药| 血常规用什么颜色的试管| 芷字五行属什么| 喝啤酒头疼是什么原因| 拉大便有血是什么原因| 水牛是什么意思| rebecca什么意思| 女人吃生蚝有什么好处| 牙龈流血是什么原因| 爆单什么意思| 擅长是什么意思| 大米饭配什么菜最好吃| 糖尿病人适合喝什么茶| 己未五行属什么| 纯水是什么| 为什么冰箱冷藏室会结冰| 骨质疏松是什么意思| 夏天结婚新郎穿什么衣服图片| 失心疯是什么意思| 试婚是什么意思啊| 生物公司是做什么的| 脸上长红色的痘痘是什么原因| 干你什么事| 牛逼是什么意思| 血沉高是什么病| 隔空打牛是什么意思| hav是什么病毒| 肝血虚吃什么中成药| 维生素b12片治什么病| 床上放什么可以驱虫| 什么网名好| 早上吃什么| 海底轮是什么意思| 脐带绕颈有什么症状| 拔牙后吃什么消炎药最好| 一诺千金是什么生肖| 吃豌豆有什么好处| 小孩子拉肚子吃什么药| ipo是什么| 孔雀吃什么食物| 吃什么头发能变黑| 2月2是什么星座| 明年是什么生肖| mi是什么单位| 2月25号是什么星座| alt医学上是什么意思| 血压高可以吃什么水果| 缺钙会出现什么症状| 红班狠疮的早期症状是什么| 鞠婧祎什么星座| 酷暑难当是什么意思| 伤口撒什么药粉好得快| 妊娠高血压对胎儿有什么影响| 肝内多发低密度影是什么意思| 一个金字旁一个本念什么| 大寒吃什么| 孩子上火了吃什么降火最快| 劲酒是什么酒| 王字加一笔是什么字| 男性一般检查什么| 梦见很多蛇是什么征兆| 熬夜吃什么补回来| 外阴瘙痒用什么药膏好| 高压低压是什么意思| buns是什么意思| 活佛是什么意思呀| 下呼吸道感染吃什么药| 艾滋病初期有什么症状| 智障是什么意思| 屁股疼是什么原因| 室内传导阻滞什么意思| 手机五行属什么| rf是什么意思| 三氧化硫常温下是什么状态| 古井贡酒属于什么档次| 六月十六是什么日子| 吃鹅蛋对孕妇有什么好处| 8000年前是什么朝代| 儿童口臭什么原因引起的| 薄荷音是什么意思| 什么是肝阳上亢| 砗磲是什么| 榴莲有什么营养| 菩提树长什么样| 增致牛仔属于什么档次| 好的什么意思| 2001属什么生肖| 运动出汗有什么好处| 先自度其足的度是什么意思| 头晕四肢无力是什么原因| 1月29日什么星座| 茉莉花茶有什么作用| 07属什么生肖| 维他命是什么意思| 掮客是什么意思| 7月7号是什么星座| ccb是什么药物| 乾隆是什么生肖| 局灶肠化是什么意思| 猛虎下山是什么生肖| 湿疹擦什么药膏好| 女生吃避孕药有什么副作用| 耳朵为什么老是痒| 望眼欲穿是什么意思| 铁达时手表什么档次| 抵牾是什么意思| SS是什么| 长得标致是什么意思| 安赛蜜是什么东西| 有何贵干是什么意思| 决明子有什么功效| 地屈孕酮片什么时候吃| 5个月宝宝可以吃什么水果| 侬是什么意思| 脖子长小肉粒是什么原因| 用什么点豆腐最健康| 星月菩提是什么| 人天是什么意思| 胆红素高吃什么食物能降得快| v8是什么| 主动权是什么意思| 下眼睑肿胀是什么原因| 耳鼻喉科主要看什么病| 首级是什么意思| s是什么化学元素| 孕妇吃什么菜好| 为什么有狐臭| 输卵管为什么会堵塞原因是什么| 为什么会气虚| 什么时候打胎对身体伤害最小| 肺结节是什么症状| ldl是什么意思| 马蜂窝治什么病最好| 钢琴8级什么水平| 血压低有什么症状表现| 什么是统招生| 腿上有白色条纹是什么| 投射效应是什么意思| 英语什么时候学最好| 皮蛋是什么蛋| 孕早期头晕是什么原因| 你喜欢什么动物| 29是什么生肖| 老来得子是什么意思| 物以类聚什么意思| 外阴白斑瘙痒用什么药| 指甲缝疼是什么原因| 忠于自己是什么意思| 莲叶和荷叶有什么区别| 虾米是什么意思| 胆红素是什么| 稽留热常见于什么病| 手指发痒是什么原因| 口是心非是什么动物| 讣告是什么意思| 总做噩梦是什么原因| 玳瑁色是什么颜色| 是什么部首| 梦到做饭是什么意思| 1993年属什么| 六味地黄丸是治什么病| 不是省油的灯是什么意思| 封神是什么意思| 流口水什么原因| 仓鼠突然死了是为什么| 腺苷脱氨酶高什么意思| 嗣后是什么意思| 玉米什么的什么的| 今年什么时候进入伏天| 上海副市长什么级别| 白细胞是什么| 女性绝经期在什么年龄是正常的| 总监是什么级别| 蚊子喜欢什么| 42天产后检查都检查什么项目| 生理期提前是什么原因| 喝咖啡困倦是什么原因| 宝宝什么时候添加辅食最好| 为什么抽烟会恶心想吐| 软绵绵的什么| 伟岸一般形容什么人| 壬寅年五行属什么| 医院医务科是干什么的| 处女座的幸运色是什么颜色| 眼珠发黄是什么原因| 路虎为什么叫奇瑞路虎| 百度Jump to content

83.5%受访家长支持推迟小学上学时间

From Wikipedia, the free encyclopedia
Strontium titanate
Sample of strontium titanite as tausonite
Sample of strontium titanite as tausonite
Names
Other names
Strontium titanium oxide
百度 例如有关零售、支付和交通运输等行业的大数据,迪士尼、同仁堂等品牌形象,都在长期的反复使用中成为高价值软资源。

Tausonite

STO
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.846 Edit this at Wikidata
EC Number
  • 235-044-1
MeSH Strontium+titanium+oxide
UNII
  • InChI=1S/3O.Sr.Ti/q;2*-1;+2; checkY
    Key: VEALVRVVWBQVSL-UHFFFAOYSA-N checkY
  • InChI=1/3O.Sr.Ti/q;2*-1;+2;/rO3Ti.Sr/c1-4(2)3;/q-2;+2
    Key: VEALVRVVWBQVSL-VUHNDFTMAE
  • [Sr++].[O-][Ti]([O-])=O
  • [Sr+2].[O-][Ti]([O-])=O
Properties
SrTiO
3
Molar mass 183.49 g/mol
Appearance White, opaque crystals
Density 5.11 g/cm3
Melting point 2,080 °C (3,780 °F; 2,350 K)
insoluble
2.394
Structure
Cubic Perovskite
Pm3m, No. 221
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY?N ?)

Strontium titanate is an oxide of strontium and titanium with the chemical formula SrTiO3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase transition with a very large dielectric constant ~104 but remains paraelectric down to the lowest temperatures measured as a result of quantum fluctuations, making it a quantum paraelectric.[1] It was long thought to be a wholly artificial material, until 1982 when its natural counterpart—discovered in Siberia and named tausonite—was recognised by the IMA. Tausonite remains an extremely rare mineral in nature, occurring as very tiny crystals. Its most important application has been in its synthesized form wherein it is occasionally encountered as a diamond simulant, in precision optics, in varistors, and in advanced ceramics.

The name tausonite was given in honour of Lev Vladimirovich Tauson (1917–1989), a Russian geochemist. Disused trade names for the synthetic product include strontium mesotitanate, Diagem, and Marvelite. This product is currently being marketed for its use in jewelry under the name Fabulite.[2] Other than its type locality of the Murun Massif in the Sakha Republic, natural tausonite is also found in Cerro Sarambi, Concepción department, Paraguay; and along the Kotaki River of Honshū, Japan.[3][4]

Properties

[edit]
Atomic resolution image of SrTiO3 acquired using a Scanning Transmission Electron Microscope (STEM) and a high angle annular dark field (HAADF) detector. Brighter spots are columns of atoms containing Sr, and darker spots contain Ti. Columns containing only O atoms are not visible.
Structure of SrTiO3. The red spheres are oxygens, blue are Ti4+ cations, and the green ones are Sr2+.

SrTiO3 has an indirect band gap of 3.25 eV and a direct gap of 3.75 eV [5] in the typical range of semiconductors. Synthetic strontium titanate has a very large dielectric constant (300) at room temperature and low electric field. It has a specific resistivity of over 109 Ω-cm for very pure crystals.[6] It is also used in high-voltage capacitors. Introducing mobile charge carriers by doping leads to Fermi-liquid metallic behavior already at very low charge carrier densities.[7] At high electron densities strontium titanate becomes superconducting below 0.35 K and was the first insulator and oxide discovered to be superconductive.[8]

Strontium titanate is both much denser (specific gravity 4.88 for natural, 5.13 for synthetic) and much softer (Mohs hardness 5.5 for synthetic, 6–6.5 for natural) than diamond. Its crystal system is cubic and its refractive index (2.410—as measured by sodium light, 589.3 nm) is nearly identical to that of diamond (at 2.417), but the dispersion (the optical property responsible for the "fire" of the cut gemstones) of strontium titanate is 4.3× that of diamond, at 0.190 (B–G interval). This results in a shocking display of fire compared to diamond and diamond simulants such as YAG, GAG, GGG, Cubic Zirconia, and Moissanite.[3][4]

Synthetics are usually transparent and colourless, but can be doped with certain rare earth or transition metals to give reds, yellows, browns, and blues. Natural tausonite is usually translucent to opaque, in shades of reddish brown, dark red, or grey. Both have an adamantine (diamond-like) lustre. Strontium titanate is considered extremely brittle with a conchoidal fracture; natural material is cubic or octahedral in habit and streaks brown. Through a hand-held (direct vision) spectroscope, doped synthetics will exhibit a rich absorption spectrum typical of doped stones. Synthetic material has a melting point of ca. 2080 °C (3776 °F) and is readily attacked by hydrofluoric acid.[3][4] Under extremely low oxygen partial pressure, strontium titanate decomposes via incongruent sublimation of strontium well below the melting temperature.[9]

At temperatures lower than 105 K, its cubic structure transforms to tetragonal.[10] Its monocrystals can be used as optical windows and high-quality sputter deposition targets.

Strontium titanate single crystal substrates (5×5×0.5mm). The transparent substrate (left) is pure SrTiO3 and the black substrate is doped with 0.5% (weight) of niobium

SrTiO3 is an excellent substrate for epitaxial growth of high-temperature superconductors and many oxide-based thin films. It is particularly well known as the substrate for the growth of the lanthanum aluminate-strontium titanate interface. Doping strontium titanate with niobium makes it electrically conductive, being one of the only conductive commercially available single crystal substrates for the growth of perovskite oxides. Its bulk lattice parameter of 3.905? makes it suitable as the substrate for the growth of many other oxides, including the rare-earth manganites, titanates, lanthanum aluminate (LaAlO3), strontium ruthenate (SrRuO3) and many others. Oxygen vacancies are fairly common in SrTiO3 crystals and thin films. Oxygen vacancies induce free electrons in the conduction band of the material, making it more conductive and opaque. These vacancies can be caused by exposure to reducing conditions, such as high vacuum at elevated temperatures.

High-quality, epitaxial SrTiO3 layers can also be grown on silicon without forming silicon dioxide, thereby making SrTiO3 an alternative gate dielectric material. This also enables the integration of other thin film perovskite oxides onto silicon.[11]

SrTiO3 can change its properties when it is exposed to light.[12][13] These changes depend on the temperature and the defects in the material.[13][12] SrTiO3 has been shown to possess persistent photoconductivity where exposing the crystal to light will increase its electrical conductivity by over 2 orders of magnitude. After the light is turned off, the enhanced conductivity persists for several days, with negligible decay.[14][15] At low temperatures, the main effects of light are electronic, meaning that they involve the creation, movement, and recombination of electrons and holes (positive charges) in the material.[13][12] These effects include photoconductivity, photoluminescence, photovoltage, and photochromism. They are influenced by the defect chemistry of SrTiO3, which determines the energy levels, band gap, carrier concentration, and mobility of the material. At high temperatures (>200 °C), the main effects of light are photoionic, meaning that they involve the migration of oxygen vacancies (negative ions) in the material. These vacancies are the main ionic defects in SrTiO3, and they can alter the electronic structure, defect chemistry, and surface properties of the material. These effects include photoinduced phase transitions, photoinduced oxygen exchange, and photoinduced surface reconstruction. They are influenced by the oxygen pressure, the crystal structure, and the doping level of SrTiO3.[13][12]

Due to the significant ionic and electronic conduction of SrTiO3, it is potent to be used as the mixed conductor.[16]

Synthesis

[edit]
A plate cut out of synthetic SrTiO3 crystal

Synthetic strontium titanate was one of several titanates patented during the late 1940s and early 1950s; other titanates included barium titanate and calcium titanate. Research was conducted primarily at the National Lead Company (later renamed NL Industries) in the United States, by Leon Merker and Langtry E. Lynd. Merker and Lynd first patented the growth process on February 10, 1953; a number of refinements were subsequently patented over the next four years, such as modifications to the feed powder and additions of colouring dopants.

A modification to the basic Verneuil process (also known as flame-fusion) is the favoured method of growth. An inverted oxy-hydrogen blowpipe is used, with feed powder mixed with oxygen carefully fed through the blowpipe in the typical fashion, but with the addition of a third pipe to deliver oxygen—creating a tricone burner. The extra oxygen is required for successful formation of strontium titanate, which would otherwise fail to oxidize completely due to the titanium component. The ratio is ca. 1.5 volumes of hydrogen for each volume of oxygen. The highly purified feed powder is derived by first producing titanyl double oxalate salt (SrTiO(C2O4)2 · 2 H2O) by reacting strontium chloride (SrCl2) and oxalic acid ((COOH)2 · 2 H2O) with titanium tetrachloride (TiCl4). The salt is washed to eliminate chloride, heated to 1000 °C in order to produce a free-flowing granular powder of the required composition, and is then ground and sieved to ensure all particles are between 0.2 and 0.5 micrometres in size.[17]

The feed powder falls through the oxyhydrogen flame, melts, and lands on a rotating and slowly descending pedestal below. The height of the pedestal is constantly adjusted to keep its top at the optimal position below the flame, and over a number of hours the molten powder cools and crystallises to form a single pedunculated pear or boule crystal. This boule is usually no larger than 2.5 centimetres in diameter and 10 centimetres long; it is an opaque black to begin with, requiring further annealing in an oxidizing atmosphere in order to make the crystal colourless and to relieve strain. This is done at over 1000 °C for 12 hours.[17]

Thin films of SrTiO3 can be grown epitaxially by various methods, including pulsed laser deposition, molecular beam epitaxy, RF sputtering and atomic layer deposition. As in most thin films, different growth methods can result in significantly different defect and impurity densities and crystalline quality, resulting in a large variation of the electronic and optical properties.

Use as a diamond simulant

[edit]

Its cubic structure and high dispersion once made synthetic strontium titanate a prime candidate for simulating diamond. Beginning c.?1955, large quantities of strontium titanate were manufactured for this sole purpose. Strontium titanate was in competition with synthetic rutile ("titania") at the time, and had the advantage of lacking the unfortunate yellow tinge and strong birefringence inherent to the latter material. While it was softer, it was significantly closer to diamond in likeness. Eventually, however, both would fall into disuse, being eclipsed by the creation of "better" simulants: first by yttrium aluminium garnet (YAG) and followed shortly after by gadolinium gallium garnet (GGG); and finally by the (to date) ultimate simulant in terms of diamond-likeness and cost-effectiveness, cubic zirconia.[18]

Despite being outmoded, strontium titanate is still manufactured and periodically encountered in jewellery. It is one of the most costly of diamond simulants, and due to its rarity collectors may pay a premium for large i.e. >2 carat (400 mg) specimens. As a diamond simulant, strontium titanate is most deceptive when mingled with melée i.e. <0.20 carat (40 mg) stones and when it is used as the base material for a composite or doublet stone (with, e.g., synthetic corundum as the crown or top of the stone). Under the microscope, gemmologists distinguish strontium titanate from diamond by the former's softness—manifested by surface abrasions—and excess dispersion (to the trained eye), and occasional gas bubbles which are remnants of synthesis. Doublets can be detected by a join line at the girdle ("waist" of the stone) and flattened air bubbles or glue visible within the stone at the point of bonding.[19][20][21]

Use in radioisotope thermoelectric generators

[edit]

Due to its high melting point and insolubility in water, strontium titanate has been used as a strontium-90-containing material in radioisotope thermoelectric generators (RTGs), such as the US Sentinel and Soviet Beta-M series.[22][23] As strontium-90 has a high fission product yield and is easily extracted from spent nuclear fuel, Sr-90-based RTGs can in principle be produced cheaper than those based on plutonium-238 or other radionuclides which have to be produced in dedicated facilities. However, due to the lower power density (~0.45W thermal per gram of strontium-90-titanate) and half-life, space-based applications, which put a particular premium on low weight, high reliability and longevity, prefer plutonium-238. Terrestrial off-grid applications of RTGs meanwhile have been largely phased out due to concern over orphan sources and the decreasing price and increasing availability of solar panels, small wind turbines, chemical battery storage and other off-grid power solutions.

Use in solid oxide fuel cells

[edit]

Strontium titanate's mixed conductivity has attracted attention for use in solid oxide fuel cells (SOFCs). It demonstrates both electronic and ionic conductivity which is useful for SOFC electrodes because there is an exchange of gas and oxygen ions in the material and electrons on both sides of the cell.

H2 + O2? → H2O + 2 e?    (anode)
? O2 + 2 e? → O2?    (cathode)

Strontium titanate is doped with different materials for use on different sides of a fuel cell. On the fuel side (anode), where the first reaction occurs, it is often doped with lanthanum to form lanthanum-doped strontium titanate (LST). In this case, the A-site, or position in the unit cell where strontium usually sits, is sometimes filled by lanthanum instead, this causes the material to exhibit n-type semiconductor properties, including electronic conductivity. It also shows oxygen ion conduction due to the perovskite structure tolerance for oxygen vacancies. This material has a thermal coefficient of expansion similar to that of the common electrolyte yttria-stabilized zirconia (YSZ), chemical stability during the reactions which occur at fuel cell electrodes, and electronic conductivity of up to 360 S/cm under SOFC operating conditions.[24] Another key advantage of these LST is that it shows a resistance to sulfur poisoning, which is an issue with the currently used nickel - ceramic (cermet) anodes.[25]

Another related compound is strontium titanium ferrite (STF) which is used as a cathode (oxygen-side) material in SOFCs. This material also shows mixed ionic and electronic conductivity which is important as it means the reduction reaction which happens at the cathode can occur over a wider area.[26] Building on this material by adding cobalt on the B-site (replacing titanium) as well as iron, we have the material STFC, or cobalt-substituted STF, which shows remarkable stability as a cathode material as well as lower polarization resistance than other common cathode materials such as lanthanum strontium cobalt ferrite. These cathodes also have the advantage of not containing rare earth metals which make them cheaper than many of the alternatives.[27]

See also

[edit]

References

[edit]
  1. ^ K. A. Muller; H. Burkard (1979). "SrTiO3: An intrinsic quantum paraelectric below 4 K". Phys. Rev. B. 19 (7): 3593–3602. Bibcode:1979PhRvB..19.3593M. doi:10.1103/PhysRevB.19.3593.
  2. ^ Mottana, Annibale (March 1986). "Una brillante sintesi". Scienza e Dossier (in Italian). 1 (1). Giunti: 9.
  3. ^ a b c "Tausonite". Webmineral. Retrieved 2025-08-07.
  4. ^ a b c "Tausonite". Mindat. Retrieved 2025-08-07.
  5. ^ K. van Benthem, C. Els?sser and R. H. French (2001). "Bulk electronic structure of SrTiO3: Experiment and theory". Journal of Applied Physics. 90 (12): 6156. Bibcode:2001JAP....90.6156V. doi:10.1063/1.1415766. S2CID 54065614.
  6. ^ "Strontium Titanate". ESPI Metals. ESPICorp. Archived from the original on 2025-08-07.
  7. ^ Xiao Lin, Beno?t Fauqué, Kamran Behnia (2015). "Scalable T2 resistivity in a small single-component Fermi surface". Science. 349 (6251): 945–8. arXiv:1508.07812. Bibcode:2015Sci...349..945L. doi:10.1126/science.aaa8655. PMID 26315430. S2CID 148360.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Koonce, C. S.; Cohen, Marvin L. (1967). "Superconducting Transition Temperatures of Semiconducting SrTiO3". Phys. Rev. 163 (2): 380. Bibcode:1967PhRv..163..380K. doi:10.1103/PhysRev.163.380.
  9. ^ C. Rodenbücher; P. Meuffels; W. Speier; M. Ermrich; D. Wrana; F. Krok; K. Szot (2017). "Stability and Decomposition of Perovskite-Type Titanates upon High-Temperature Reduction". Phys. Status Solidi RRL. 11 (9): 1700222. Bibcode:2017PSSRR..1100222R. doi:10.1002/pssr.201700222. S2CID 102882984.
  10. ^ L. Rimai; G. A. deMars (1962). "Electron Paramagnetic Resonance of Trivalent Gadolinium Ions in Strontium and Barium Titanates". Phys. Rev. 127 (3): 702. Bibcode:1962PhRv..127..702R. doi:10.1103/PhysRev.127.702.
  11. ^ R. A. McKee; F. J. Walker; M. F. Chisholm (1998). "Crystalline Oxides on Silicon: The First Five Monolayers". Phys. Rev. Lett. 81 (14): 3014. Bibcode:1998PhRvL..81.3014M. doi:10.1103/PhysRevLett.81.3014.
  12. ^ a b c d Siebenhofer, Matth?us; Viernstein, Alexander; Morgenbesser, Maximilian; Fleig, Jürgen; Kubicek, Markus (February 6, 2021). "Photoinduced electronic and ionic effects in strontium titanate". Materials Advances. 2 (23): 7583–7619. doi:10.1039/D1MA00906K. PMC 8628302. PMID 34913036.
  13. ^ a b c d Siebenhofer, Matth?us; Viernstein, Alexander; Morgenbesser, Maximilian; Fleig, Jürgen; Kubicek, Markus (November 2021). "Photoinduced electronic and ionic effects in strontium titanate". Mater Adv. 2 (23): 7583–7619. doi:10.1039/d1ma00906k. PMC 8628302. PMID 34913036.
  14. ^ Tarun, Marianne C.; Selim, Farida A.; McCluskey, Matthew D. (2013). "Persistent Photoconductivity in Strontium Titanate". Physical Review Letters. 111 (18). Department of Physics and Astronomy, Washington State University, Pullman, Washington.: 187403. Bibcode:2013PhRvL.111r7403T. doi:10.1103/PhysRevLett.111.187403. PMID 24237562. Retrieved 2025-08-07.
  15. ^ "Light Exposure Increases Crystal's Electrical Conductivity 400-fold [VIDEO]". Nature World News. Retrieved 2025-08-07.
  16. ^ "Mixed conductors". Max Planck institute for solid state research. Retrieved 16 September 2016.
  17. ^ a b H. J. Scheel; P. Capper (2008). Crystal growth technology: from fundamentals and simulation to large-scale production. Wiley-VCH. p. 431. ISBN 978-3-527-31762-2.
  18. ^ R. W. Hesse (2007). Jewelrymaking through history: an encyclopedia. Greenwood Publishing Group. p. 73. ISBN 978-0-313-33507-5.
  19. ^ Nassau, K. (1980). Gems made by man. Santa Monica, California: Gemological Institute of America. pp. 214–221. ISBN 0-87311-016-1.
  20. ^ O'Donoghue, M. (2002). Synthetic, imitation & treated gemstones. Great Britain: Elsevier Butterworth-Heinemann. pp. 34, 65. ISBN 0-7506-3173-2.
  21. ^ Read, P. G. (1999). Gemmology, second edition. Great Britain: Butterworth-Heinemann. pp. 173, 176, 177, 293. ISBN 0-7506-4411-7.
  22. ^ "Power Sources for Remote Arctic Applications" (PDF). Washington, DC: U.S. Congress, Office of Technology Assessment. June 1994. OTA-BP-ETI-129.
  23. ^ Standring, WJF; Seln?s, ?G; Sneve, M; Finne, IE; Hosseini, A; Amundsen, I; Strand, P (2005), Assessment of environmental, health and safety consequences of decommissioning radioisotope thermal generators (RTGs) in Northwest Russia (PDF), ?ster?s: Norwegian Radiation Protection Authority, archived from the original (PDF) on 2025-08-07, retrieved 2025-08-07
  24. ^ Marina, O (2002). "Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate". Solid State Ionics. 149 (1–2): 21–28. doi:10.1016/S0167-2738(02)00140-6.
  25. ^ Gong, Mingyang; Liu, Xingbo; Trembly, Jason; Johnson, Christopher (2007). "Sulfur-tolerant anode materials for solid oxide fuel cell application". Journal of Power Sources. 168 (2): 289–298. Bibcode:2007JPS...168..289G. doi:10.1016/j.jpowsour.2007.03.026.
  26. ^ Jung, WooChul; Tuller, Harry L. (2009). "Impedance study of SrTi1?xFexO3?δ (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode". Solid State Ionics. 180 (11–13): 843–847. doi:10.1016/j.ssi.2009.02.008.
  27. ^ Zhang, Shan-Lin; Wang, Hongqian; Lu, Matthew Y.; Zhang, Ai-Ping; Mogni, Liliana V.; Liu, Qinyuan; Li, Cheng-Xin; Li, Chang-Jiu; Barnett, Scott A. (2018). "Cobalt-substituted SrTi 0.3 Fe 0.7 O 3?δ : a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells". Energy & Environmental Science. 11 (7): 1870–1879. doi:10.1039/C8EE00449H. hdl:11336/99985.
[edit]
摇摇欲坠是什么意思 什么叫酮症酸中毒 北京户口有什么好处 mmhg是什么单位 避孕套有什么危害
眼压高是什么症状 咽喉老有痰是什么原因 牙齿遇热就疼什么原因 miniso是什么意思 傻白甜是什么意思
彻夜难眠什么意思 箭在弦上是什么意思 什么叫布施 mcu是什么 来来来喝完这杯还有三杯是什么歌
chihiro是什么意思 糖尿病吃什么食物 肾炎的症状是什么 每天放很多屁是什么原因 为什么说婴儿摔床没事
什么是保健食品hcv9jop4ns8r.cn 雾化是治疗什么的hcv9jop3ns3r.cn 什么时候开始数伏hcv8jop2ns7r.cn lisa英文名什么意思hcv9jop3ns1r.cn 什么叫做thcv9jop0ns9r.cn
小二是什么意思hcv8jop7ns3r.cn 兔跟什么生肖配对最好hcv8jop7ns9r.cn 为什么睡不着觉hcv9jop3ns4r.cn 头晕什么原因引起的hcv8jop4ns8r.cn 猫咪飞机耳是什么意思hcv8jop4ns1r.cn
海贼王什么时候出的hcv9jop4ns3r.cn 子不教父之过是什么意思hcv9jop2ns1r.cn asd什么意思tiangongnft.com 1129是什么星座hcv9jop1ns7r.cn 美国为什么不敢动朝鲜hcv8jop7ns8r.cn
耗儿鱼是什么鱼gangsutong.com 梦见穿袜子是什么意思hcv8jop3ns5r.cn 高血压吃什么盐比较好hcv7jop5ns1r.cn 儿白是什么意思hcv9jop5ns1r.cn 维c有什么功效和作用hcv9jop6ns6r.cn
百度